If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=197-21t-16t^2
We move all terms to the left:
0-(197-21t-16t^2)=0
We add all the numbers together, and all the variables
-(197-21t-16t^2)=0
We get rid of parentheses
16t^2+21t-197=0
a = 16; b = 21; c = -197;
Δ = b2-4ac
Δ = 212-4·16·(-197)
Δ = 13049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{13049}}{2*16}=\frac{-21-\sqrt{13049}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{13049}}{2*16}=\frac{-21+\sqrt{13049}}{32} $
| -7m=84 | | 25=5+44t-16t^2 | | 8x-2=95 | | 11x=84 | | -11/7=k/7 | | 2x+6+5=5x-1 | | 624=1/2b12 | | 20=p/6 | | 7x-8=-99 | | 100•x+75(640-x)=55000 | | -53=5x+2 | | 7-10/x=4+2/x | | 5(3u+4)+9=2(2u-2) | | 5x=19+6x | | -9x^2+(x^2+3)^2=13 | | 2(2x-10)=80 | | 4x+4+2x+4=26 | | 14x-40x^2=0 | | 0,7=7,7-2a | | 1/r+5/7=3/2 | | 7x+3x^2=0 | | (4^4-4^3-23^2+12+36)y=0 | | 1.4x-2+2=2x-2+3.2 | | -5(s-7)=10 | | p=7+0.4/2.3 | | 4-10a=1.5 | | 2.3p-14.1=6.4-4 | | x−3/5=10 | | Y=x3x=-3 | | (3x+4)*x=300 | | A=3.142d | | 2x2-1=35 |